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Announcements
•Homework 3 due today

• Due May 10th (11:59pm)

•Midterm Exam
• In class May 15th

• Closed-Book Exam, no cell phone

• Bring a simple electronic calculator

• You can bring an A4 size reference sheet
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Methods Learnt: Last Lecture
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Vector Data Text Data Recommender 
System

Graph & Network

Classification Decision Tree; Naïve 
Bayes; Logistic 
Regression
SVM; NN

Label Propagation

Clustering K-means; hierarchical
clustering; DBSCAN; 
Mixture Models; 
kernel k-means

PLSA;
LDA

Matrix Factorization SCAN; Spectral 
Clustering

Prediction Linear Regression
GLM

Collaborative Filtering

Ranking PageRank

Feature 
Representation

Word embedding Network embedding



Methods to Learn
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Text Data: Word Embedding
• Introduction to Word Representation 

•Word2vec: CBOW and Skip-Gram

•GloVe: Global Vectors for Word 
Representation

•Summary
5



Why Word Representation?
•Finding Synonyms: words that have the 
same meaning
• E.g., movie and film

•Finding polysemy: words with multiple 
meanings
• E.g., light

•Document representation
• E.g., aggregation of all the word representation
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How to Represent a Word?
•Challenge

• Discrete structure

•Simple representation
• One-hot representation: a vector with one 1 
and a lot of zeroes

• E.g., Motel =
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Problem of One-Hot Representation
•High dimensionality

• E.g., for Google news, 13M words

•Sparse
• Only 1 non-zero value

•Shallow representation
• E.g., 
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Word Embedding
•Low dimensional vector representation of 
every word
• E.g., motel = [1.3, -1.4] and hotel = [1.2, -1.5]
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How to Learn Such Embeddings?
•Using context information!
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A Naïve Approach
•Build a co-occurrence matrix for words, 
and apply SVD
• Example Corpus:

• I like deep learning.
• I like NLP.
• I enjoy flying.

• Issues:
• Global context

• SVD is very expensive
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Text Data: Word Embedding
• Introduction to Word Representation 

•Word2vec: CBOW and Skip-Gram

•GloVe: Global Vectors for Word 
Representation
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Word2Vec
• Proposed by Mikolov et al. at Google in 2013
• The most popular word embedding models
• Two architectures are proposed

• Continuous bag-of-words (CBOW)

• Skip-gram

• Extremely fast
• “an optimized single-machine implementation can 
train on more than 100 billion words in one day”
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Main Idea of Word2Vec
•Consider a local window of a target word 

• CBOW: predict the target words given the 
neighbors

• Skip-gram: predict neighbors given the target 
words
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CBOW
•Predicting target using neighbors
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Skip-Gram
•Predicting neighbors using target
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The Conditional Probability
•𝑙𝑙(𝑤𝑤𝑡𝑡+𝑗𝑗|𝑤𝑤𝑡𝑡): the probability to see 𝑤𝑤𝑡𝑡+𝑗𝑗 in 
target word 𝑤𝑤𝑡𝑡’s neighborhood
• Intuition: 𝑤𝑤𝑡𝑡’s embedding should be closer to 
𝑤𝑤𝑡𝑡+𝑗𝑗’s embedding

• Every word has two copies of embedding
• One serves as the role of target (v), and the other 

serves as the role of context (u)
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A Neural Network Point of View
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Input Layer: 
one-hot vector

Hidden Layer: 
Linear (Identity)

Output Layer: 
softmax



Demo
•https://ronxin.github.io/wevi/
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Weights: 
Target Embedding

Weights: 
Context Embedding

https://ronxin.github.io/wevi/


Embedding vs. NN Weights
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Embedding Visualization
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Negative Sampling for Skip-Gram
•The original objective is not scalable for 
large size vocabulary!

•For each target, for every positive word, 
sample k negative words

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑢𝑢w𝑜𝑜
T 𝑣𝑣w𝑐𝑐 + �

𝑖𝑖=1

𝑘𝑘

𝐸𝐸𝑤𝑤𝑖𝑖~𝑃𝑃𝑛𝑛 𝑤𝑤 [𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(−𝑢𝑢𝑤𝑤𝑖𝑖
𝑇𝑇 𝑣𝑣𝑤𝑤𝑐𝑐)]
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𝑃𝑃𝑛𝑛 𝑤𝑤 : “Negative” Distribution



More on Negative Samples
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Positive Negative, e.g., k=3

(quick, dog)
(quick, sky)
(quick, flower)



A Potential Application
•Relation detection
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25



Combining Two Worlds
•Matrix factorization for global word-word 
co-occurrence matrix
• E.g., SVD

• Global matrix factorization

•Make predictions within local context 
windows
• E.g., word2vec

• Local context window
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Objective Function

27

𝑋𝑋𝑖𝑖𝑗𝑗:𝑛𝑛𝑢𝑢𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑙𝑙𝑜𝑜 𝑡𝑡𝑡𝑡𝑛𝑛𝑛𝑛𝑡𝑡 𝑤𝑤𝑙𝑙𝑛𝑛𝑤𝑤 𝑗𝑗 𝑎𝑎𝑙𝑙𝑙𝑙𝑛𝑛𝑎𝑎𝑛𝑛𝑡𝑡 𝑡𝑡𝑛𝑛 𝑡𝑡𝑡𝑛𝑛 𝑐𝑐𝑙𝑙𝑛𝑛𝑡𝑡𝑛𝑛𝑐𝑐 𝑙𝑙𝑜𝑜 𝑤𝑤𝑙𝑙𝑛𝑛𝑤𝑤 𝑡𝑡
𝑤𝑤𝑖𝑖:𝑤𝑤𝑙𝑙𝑛𝑛𝑤𝑤 𝑣𝑣𝑛𝑛𝑐𝑐𝑡𝑡𝑙𝑙𝑛𝑛 𝑜𝑜𝑙𝑙𝑛𝑛 𝑤𝑤𝑙𝑙𝑛𝑛𝑤𝑤 𝑡𝑡

�𝑤𝑤𝑗𝑗: 𝑐𝑐𝑙𝑙𝑛𝑛𝑡𝑡𝑛𝑛𝑐𝑐𝑡𝑡 𝑤𝑤𝑙𝑙𝑛𝑛𝑤𝑤 𝑣𝑣𝑛𝑛𝑐𝑐𝑡𝑡𝑙𝑙𝑛𝑛 𝑜𝑜𝑙𝑙𝑛𝑛 𝑤𝑤𝑙𝑙𝑛𝑛𝑤𝑤 𝑗𝑗
𝑛𝑛𝑖𝑖: 𝑛𝑛𝑡𝑡𝑎𝑎𝑡𝑡 𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑙𝑙𝑛𝑛 𝑤𝑤𝑙𝑙𝑛𝑛𝑤𝑤 𝑡𝑡

�𝑛𝑛𝑗𝑗: 𝑛𝑛𝑡𝑡𝑎𝑎𝑡𝑡 𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑙𝑙𝑛𝑛 𝑐𝑐𝑙𝑙𝑛𝑛𝑡𝑡𝑛𝑛𝑐𝑐𝑡𝑡 𝑤𝑤𝑙𝑙𝑛𝑛𝑤𝑤 𝑗𝑗
𝑜𝑜(𝑋𝑋𝑖𝑖𝑗𝑗):𝑎𝑎 𝑤𝑤𝑛𝑛𝑡𝑡𝑙𝑙𝑡𝑡𝑡𝑡𝑡𝑛𝑛𝑙𝑙 𝑜𝑜𝑢𝑢𝑛𝑛𝑐𝑐𝑡𝑡𝑡𝑡𝑙𝑙𝑛𝑛 𝑡𝑡𝑙𝑙 𝑙𝑙𝑢𝑢𝑛𝑛𝑡𝑡𝑡𝑡𝑡 𝑡𝑡𝑡𝑙𝑙𝑡 𝑜𝑜𝑛𝑛𝑛𝑛𝑓𝑓𝑢𝑢𝑛𝑛𝑛𝑛𝑐𝑐𝑡𝑡𝑛𝑛𝑡𝑡



Some Interesting Results: Superlatives

28



Some Interesting Results: Company-CEO
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https://nlp.stanford.edu/projects/glove/
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Summary
•Word embedding

• A low-dimensional vector representation for 
words

•Word2vec
• Local context-based prediction: CBOW and 
Skip-Gram

•Glove
• Matrix decomposition on local context co-
occurrence matrix
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