CS249: ADVANCED DATA MINING

Text Data: Word Embedding

Instructor: Yizhou Sun

yzsun@cs.ucla.edu

May 10, 2017

Announcements

- Homework 3 due today
 - Due May 10th (11:59pm)

- Midterm Exam
 - In class May 15th
 - Closed-Book Exam, no cell phone
 - Bring a simple electronic calculator
 - You can bring an A4 size reference sheet

Methods Learnt: Last Lecture

	Vector Data	Text Data	Recommender System	Graph & Network
Classification	Decision Tree; Naïve Bayes; Logistic Regression SVM; NN			Label Propagation
Clustering	K-means; hierarchical clustering; DBSCAN; Mixture Models; kernel k-means	PLSA; LDA	Matrix Factorization	SCAN; Spectral Clustering
Prediction	Linear Regression GLM		Collaborative Filtering	
Ranking				PageRank
Feature Representation		Word embedding		Network embedding

Methods to Learn

	Vector Data	Text Data	Recommender System	Graph & Network
Classification	Decision Tree; Naïve Bayes; Logistic Regression SVM; NN			Label Propagation
Clustering	K-means; hierarchical clustering; DBSCAN; Mixture Models; kernel k-means	PLSA; LDA	Matrix Factorization	SCAN; Spectral Clustering
Prediction	Linear Regression GLM		Collaborative Filtering	
Ranking				PageRank
Feature Representation		Word embedding		Network embedding

Text Data: Word Embedding

Introduction to Word Representation

Word2vec: CBOW and Skip-Gram

 GloVe: Global Vectors for Word Representation

Why Word Representation?

- Finding Synonyms: words that have the same meaning
 - E.g., movie and film
- Finding polysemy: words with multiple meanings
 - E.g., light
- Document representation
 - E.g., aggregation of all the word representation

How to Represent a Word?

Challenge

• Discrete structure

Simple representation

- One-hot representation: a vector with one 1 and a lot of zeroes
- E.g., Motel =
- [00000000010000]

Problem of One-Hot Representation

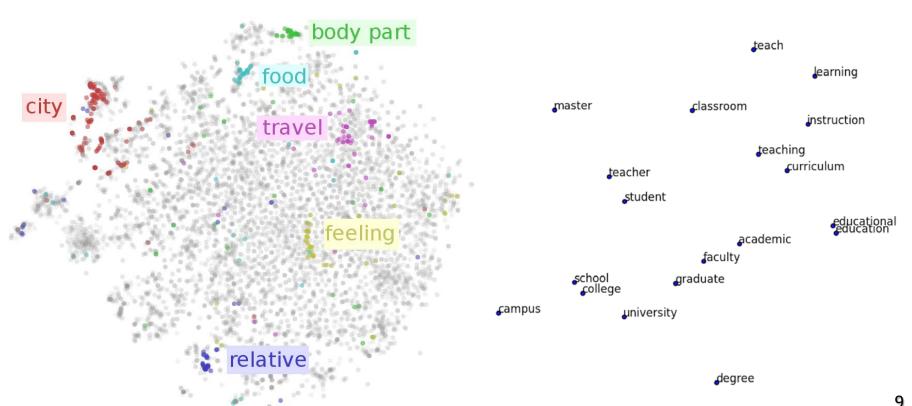
- High dimensionality
 - E.g., for Google news, 13M words
- Sparse
 - Only 1 non-zero value
- Shallow representation

• E.g.,

motel [000000000010000] AND hotel [0000001000000] = 0

Word Embedding

- Low dimensional vector representation of every word
 - E.g., motel = [1.3, -1.4] and hotel = [1.2, -1.5]



How to Learn Such Embeddings?

Using context information!

...he curtains open and the moon shining in on the barely... ...ars and the cold , close moon " . And neither of the w... ...rough the night with the moon shining so brightly, it... ...made in the light of the moon . It all boils down , wr... ...surely under a crescent moon , thrilled by ice-white... ...sun, the seasons of the moon? Home, alone, Jay pla... ...m is dazzling snow , the moon has risen full and cold... ... un and the temple of the moon , driving out of the hug... ... in the dark and now the moon rises , full and amber a... ...bird on the shape of the moon over the trees in front...

A Naïve Approach

- Build a co-occurrence matrix for words, and apply SVD
 - Example Corpus:
 - I like deep learning.
 - I like NLP.
 - I enjoy flying.
- Issues:
 - Global context
 - SVD is very expensive

counts	1	like	enjoy	deep	learning	NLP	flying	
Į.	0	2	1	0	0	0	0	0
like	2	0	0	1	0	1	0	0
enjoy	1	0	0	0	0	0	1	0
deep	0	1	0	0	1	0	0	0
learning	0	0	0	1	0	0	0	1
NLP	0	1	0	0	0	0	0	1
flying	0	0	1	0	0	0	0	1
	0	0	0	0	1	1	1	0

Text Data: Word Embedding

Introduction to Word Representation

Word2vec: CBOW and Skip-Gram

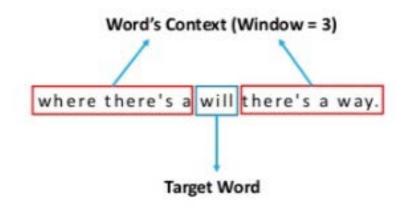
 GloVe: Global Vectors for Word Representation

Word2Vec

- Proposed by Mikolov et al. at Google in 2013
- The most popular word embedding models
- Two architectures are proposed
 - Continuous bag-of-words (CBOW)
 - Skip-gram
- Extremely fast
 - "an optimized single-machine implementation can train on more than 100 billion words in one day"

Main Idea of Word2Vec

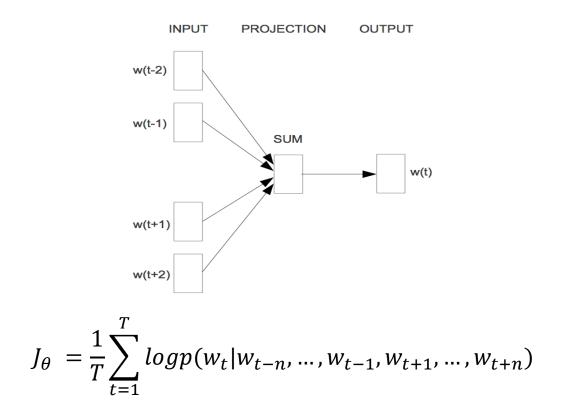
Consider a local window of a target word



- CBOW: predict the target words given the neighbors
- Skip-gram: predict neighbors given the target words

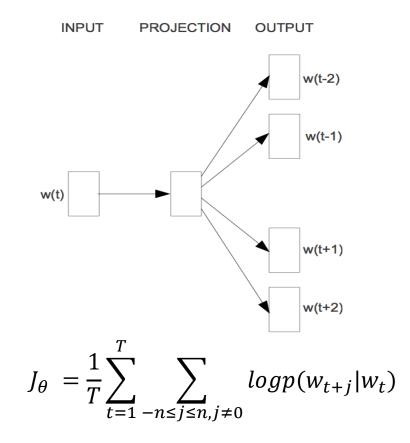
CBOW

Predicting target using neighbors



More details can be found in: http://www.1-4-5.net/~dmm/ml/how_does_word2vec_work.pdf

Predicting neighbors using target



The Conditional Probability

- $p(w_{t+j}|w_t)$: the probability to see w_{t+j} in target word w_t 's neighborhood
 - Intuition: w_t 's embedding should be closer to w_{t+j} 's embedding
 - Every word has two copies of embedding
 - One serves as the role of target (v), and the other serves as the role of context (u)

$$p(o|c) = \frac{\exp\left(u_o^T v_c\right)}{\sum_{w=1}^{W} \exp\left(u_w^T v_c\right)}$$

A Neural Network Point of View



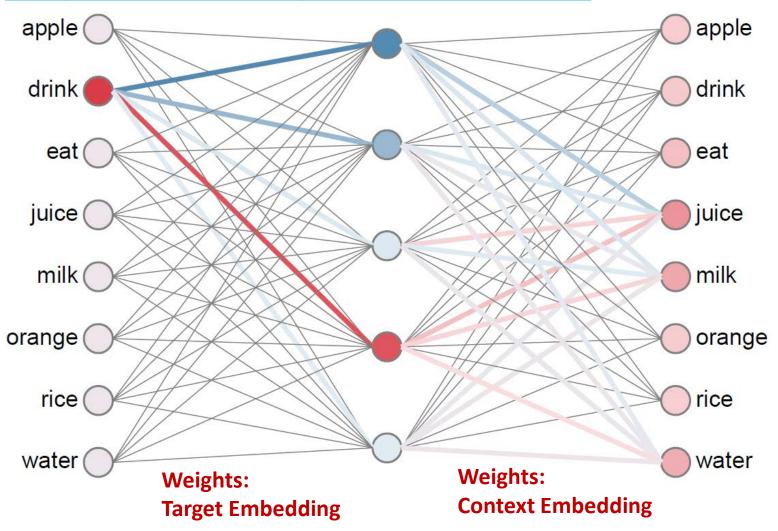
one-hot vector

Linear (Identity)

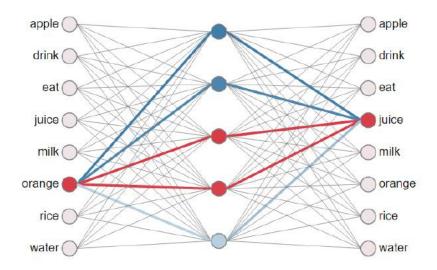
softmax

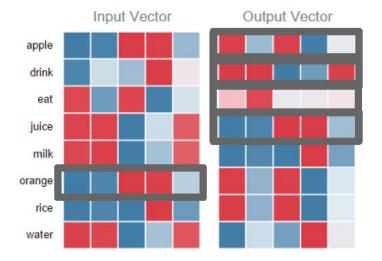
Demo

https://ronxin.github.io/wevi/

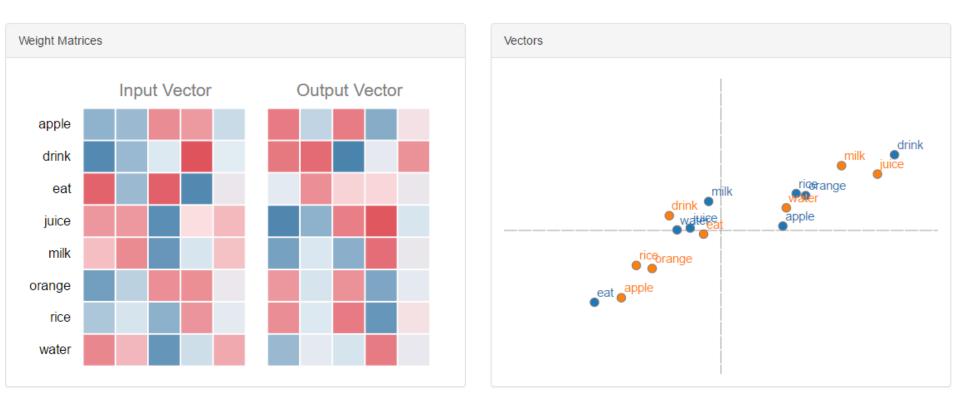


Embedding vs. NN Weights





Embedding Visualization



Negative Sampling for Skip-Gram

• The original objective is not scalable for large size vocabulary!

$$p(o|c) = \frac{\exp\left(u_o^T v_c\right)}{\sum_{w=1}^{W} \exp\left(u_w^T v_c\right)}$$

 For each target, for every positive word, sample k negative words

$$log\sigma(u_{w_o}^{\mathrm{T}}v_{w_c}) + \sum_{i=1}^{n} E_{w_i \sim P_n(w)}[log\sigma(-u_{w_i}^{\mathrm{T}}v_{w_c})]$$

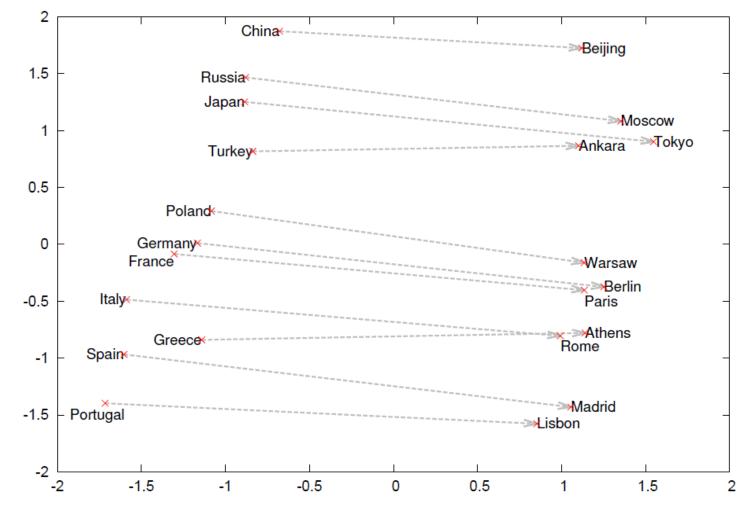
$$P_n(w): \text{"Negative" Distribution}$$

More on Negative Samples

	Positive	Negative, e.g., k=3
Source Text	Training Samples	
The quick brown fox jumps over the lazy dog. \implies	(the, quick) (the, brown)	
The quick brown fox jumps over the lazy dog. \implies	(quick, the) (quick, brown) (quick, fox)	(quick, dog) (quick, sky)
The quick brown fox jumps over the lazy dog. \Longrightarrow	(brown, the) (brown, quick) (brown, fox) (brown, jumps)	(quick, flower)
The quick brown fox jumps over the lazy dog. \longrightarrow	(fox, quick) (fox, brown) (fox, jumps) (fox, over)	

A Potential Application

Relation detection



Text Data: Word Embedding

Introduction to Word Representation

Word2vec: CBOW and Skip-Gram

GloVe: Global Vectors for Word
 Representation

Combining Two Worlds

- Matrix factorization for global word-word co-occurrence matrix
 - E.g., SVD
 - Global matrix factorization
- Make predictions within local context windows
 - E.g., word2vec
 - Local context window

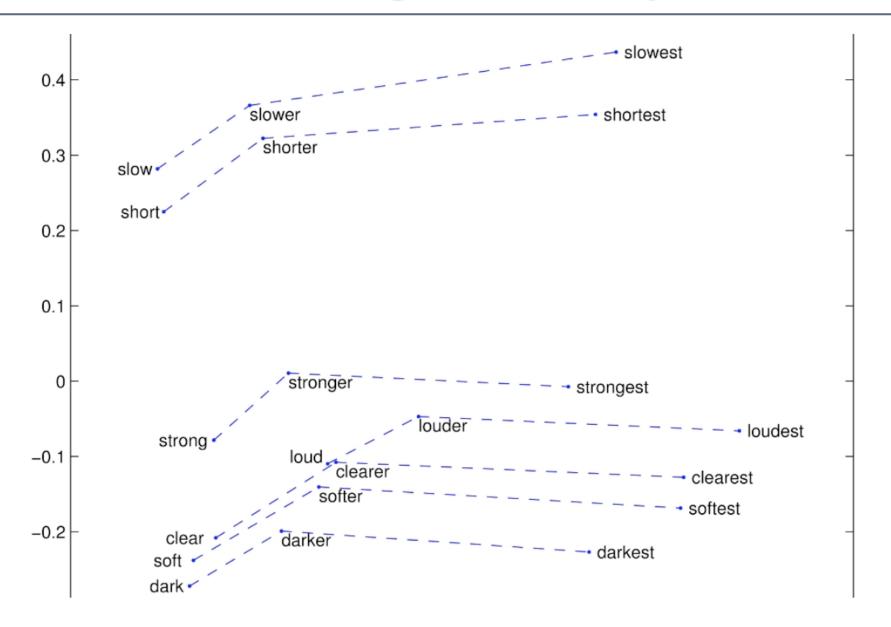
Objective Function

$$J = \sum_{i,j=1}^{V} f\left(X_{ij}\right) \left(w_i^T \tilde{w}_j + b_i + \tilde{b}_j - \log X_{ij}\right)^2$$

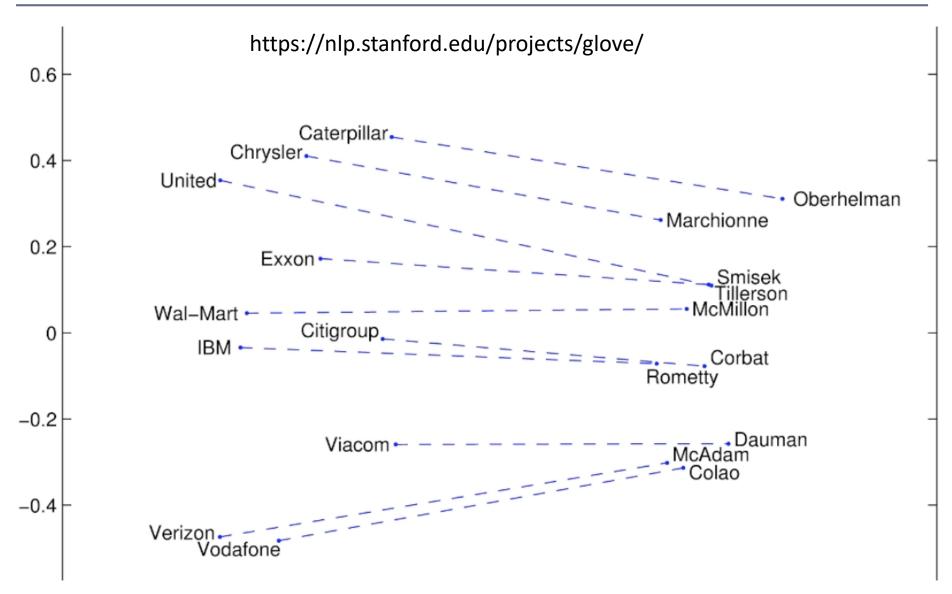
 X_{ij} : number of times word j appears in the contex of word i w_i : word vector for word i \widetilde{w}_j : context word vector for word j b_i : bias term for word i \widetilde{b}_j : bias term for context word j $f(X_{ij})$: a weighting function to punish high frequencies

$$f(X_{ij}) \begin{bmatrix} 1.0 \\ 0.8 \\ 0.6 \\ 0.4 \\ 0.2 \\ 0.0 \end{bmatrix} f(x) = \begin{cases} (x/x_{\max})^{\alpha} & \text{if } x < x_{\max} \\ 1 & \text{otherwise} \end{cases}.$$

Some Interesting Results: Superlatives



Some Interesting Results: Company-CEO



Text Data: Word Embedding

Introduction to Word Representation

Word2vec: CBOW and Skip-Gram

 GloVe: Global Vectors for Word Representation

Summary

Word embedding

• A low-dimensional vector representation for words

Word2vec

• Local context-based prediction: CBOW and Skip-Gram

Glove

• Matrix decomposition on local context cooccurrence matrix

References

- Mikolov, T., Corrado, G., Chen, K., & Dean, J. (2013). Efficient Estimation of Word Representations in Vector Space. Proceedings of the International Conference on Learning Representations (ICLR 2013), 1–12.
- Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Distributed Representations of Words and Phrases and their Compositionality. NIPS, 1–9.
- Pennington, J., Socher, R., & Manning, C. D. (2014). Glove: Global Vectors for Word Representation. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, 1532–1543.